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AbstractÐThe motion of large bubbles in tubes is investigated numerically with a two-dimensional,
transient, ®nite di�erence model using a volume fraction speci®cation to track the movement of the
gas±liquid interface. The terminal speed of the bubbles is well predicted for 10REoR100 and
10ÿ12RMoR101. The ubiquitous prolate spheroid leading edge is predicted. Both viscosity-dominated
equilibrium ®lms and essentially inviscid accelerating ®lms are observed on the tube wall. The shape of
the trailing edge is ¯at in some cases and an oblate spheroid in other cases. A criterion of Fr>0.3
seems to be appropriate to ensure a ¯at bottom on the bubble. Some favourable comparisons are made
with detailed velocity pro®le measurements available in the literature. # 1998 Elsevier Science Ltd. All
rights reserved
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1. INTRODUCTION

Gas bubbles moving through liquids in tubes occur widely in hydrocarbon production and
transportation, chemical and nuclear reactors, and heat transport systems where phase change
takes place. The distribution of the gas in the tube greatly in¯uences the hydrodynamics, heat
transfer, and mass transfer. One of the ¯ow regimes commonly observed is slug ¯ow where
large, elongated bubbles are separated by slugs of liquids that usually contain small gas bubbles.
In general, a variety of possible ¯uid properties, tube orientations, and liquid and gas ¯ow rates
produce these bubbles. A simpli®ed con®guration of considerable fundamental interest is the
case of a vertical tube and zero liquid ¯ow. This paper describes numerical predictions of the
detailed bubble shape, velocity ®eld, and pressure ®eld for this case over a wide range of con-
ditions.

The experimental results of White and Beardmore (1962) provide an excellent summary of
Taylor bubble terminal speeds. They identify the Froude number �Ut=

�������
gD
p �, EoÈ tvoÈ s number

(rgD2/s), and Morton number (gZ4/(rs3)) as the important dimensionless groups. In these
groups Ut is the terminal speed, g is the acceleration due to gravity, D is the tube diameter, r is
the liquid density, s is the surface tension, and Z is the dynamic viscosity of the liquid. Other
workers have also used the Reynolds number and the Weber number as parameters.
Experiments have been carried out for a wide range of tube diameters and liquid properties. By
including the data of several other workers, they produced a comprehensive graphical corre-
lation of Froude number as a function of EoÈ tvoÈ s number and Morton number. The correlation
covers the range 3 < Eo < 400 and 10ÿ12<Mo< 103. They concluded that viscous forces are
negligible if r2gD3/Z2>3� 105, interfacial e�ects are negligible if Eo>70, and inertial e�ects are
negligible if Fr < 0.05.

Fabre and LineÂ (1992) reviewed the motion of Taylor bubbles as part of a larger review of
slug ¯ow. They speci®cally considered the case of zero liquid ¯ow in vertical tubes. They stated
that Taylor bubbles were characterised by leading edges shaped like prolate spheroids followed
by a ®lm on the wall of the tube and ®nally a trailing edge. This trailing edge would be ¯at in
cases were viscosity is unimportant and would be an oblate spheroid in cases where viscosity is
important. The groups they used to characterise slug ¯ow are the EoÈ tvoÈ s number and a `dimen-
sionless inverse viscosity', Nf � �Eo3=Mo�1=4 �

��������������������
r2gD3=Z2

p
. When viscous forces and surface ten-
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sion forces are negligible (Nf >300 and Eo>100) the Froude number is 0.351. Surface tension
tends to reduce this Froude number and they cite a result due to Bendiksen (1985) which adjusts
Froude for Eo < 100. They state that the viscous regime is encountered for Nf<2 and in this
regime Fr = 0.1Nf. However, for intermediate values of Nf, no predictive method for Fr is
given.

DeJesus et al. (1995) made detailed velocity ®eld measurements around a Taylor bubble rising
in a vertical tube using photochromic dye activation and image analysis. Velocity vectors were
presented for the region near the bubble nose, in the falling ®lm, and in the wake. The con-
ditions reported correspond to Eo = 194 and Mo = 2.9� 10ÿ9.
Mao and Dukler (1990, 1991) developed a numerical model of the ¯ow around a Taylor

bubble using a curvilinear coordinate system attached to the bubble and ®tted to the bubble
shape. The technique adjusted the shape of the interface so that the normal stress at the inter-
face satis®ed the condition of constant pressure inside the bubble. The terminal velocity of the
bubble, and therefore the reference frame velocity, was adjusted until the bubble was locally
spherical at the nose. The solution domain extended only to the trailing edge of the bubble and
not into the wake region.

Although numerical predictions of Taylor bubble movement do exist in the literature (Mao
and Dukler 1991) this paper covers a wider range of conditions than have been reported to
date. Also, the present work makes no a priori assumption about the shape of the leading edge
or the terminal speed. The solution domain in the present model extends behind the bubble,
allowing ®eld information to be obtained in the wake region.

A technique very similar to that presented in this paper has been applied by Bugg and Rowe
(1991) to the case of large cylindrical and spherical bubbles released from rest into in®nite quies-
cent ¯uids. This work concentrated on the large deformation that occurs as the bubble trans-
forms to cylindrical and spherical cap shapes. Although this transformation process was
predicted very well, the subsequent steady motion of the caps proved challenging because of
interface advection di�culties caused by the cusped edge of the bubble.

2 . NUMERICAL MODEL

2.1. Governing equations and discretisation

In the liquid phase, the model considers the Navier±Stokes equations and the continuity
equation in a cylindrical coordinate system for an incompressible ¯uid.
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In these equations, vr and vz are the radial and axial components of velocity, respectively, t is
time, r and z are the radial and axial coordinates, and P is the pressure. These equations are dis-
cretised by ®nite di�erences on a uniform (dr = dz) staggered grid. By expressing the local accel-
eration in the Navier±Stokes equations by a ®rst-order, forward-di�erence in time, an explicit
approximation to the velocity ®eld VÄ is calculated. For example, the axial direction would
appear as:

~vz ÿ vnz
dt
� ÿ��V � r�vz�n ÿ 1

r

�
@P

@z

�n

� ��r2vz�n, �4�

where ~vz represents the axial component of the approximate velocity ®eld ~V and the n super-
scripts indicate explicit evaluation of the convective and viscous terms. The convective accelera-
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tion is hybrid di�erenced and the viscous stress is central di�erenced. The divergence �r � ~V� in
this velocity ®eld is driven to zero by a pressure correction procedure formulated from the dis-
cretised continuity equation. The velocity corrections required to correct for zero divergence are
related to the pressure corrections by (for example):

Dvz � ÿ dt
r

�
@DP
@z

�
: �5�

This yields the following pressure correction equation for liquid-®lled control volumes:

DPi,j2

�
dr
dz
� dz

dr

�
ÿ DPiÿ1,j

�
dz
dr
ÿ dz
2r2

�
ÿ DPi�1,j

�
dz
dr
� dz
2r2

�
ÿ DPi,jÿ1

dr
dz
ÿ DPi,j�1

dr
dz
� ÿ rdrdz

dt
�r � ~V�i,j: �6�

Here the indices i,j denote position in the discrete grid and the pressure correction DP updates
the P ®eld according to Pn+1=Pn+DP where the superscript n refers to the time step.
The position of the moving gas±liquid interface in the solution domain is de®ned by a frac-

tional volume of ¯uid f as suggested by Hirt and Nichols (1981). Liquid-®lled control volumes
( f= 1) use the pressure correction procedure just described. The Navier±Stokes equations are
not solved for gas-®lled control volumes ( f= 0). They have DP= 0 applied for the purpose of
the linear system in DP. For control volumes containing a gas±liquid interface (0 < f < 1), [6]
is replaced with one that imposes the normal interfacial boundary condition. The goal is to
impose a pressure at the centre of the surface control volume such that a linear interpolation of
pressure to the centre of the nearest liquid-®lled neighbour will result in the proper pressure at
the interface. The distance of the `nearest liquid-®lled neighbour' is determined by favouring in-
terpolation perpendicular to the interface. The interpolation is accomplished by the following:

Pn�1
ij � ZijPs � �1ÿ Zij �Pn�1

lm , �7�
which can be re-cast in terms of pressure corrections as:

DPij � �Zij ÿ 1�DPlm � ZijPs � �1ÿ Zij �DPn
lm ÿ Pn

ij : �8�
In this equation, DPij is the pressure correction in the surface control volume, DPlm is the press-
ure correction in the nearest full control volume, the superscript n refers to quantities at the pre-
vious time step, and Zij is an interpolation factor calculated from the position of the interface.
Ps is the pressure on the liquid side of the interface and is calculated from the pressure in the
gas and the e�ect of surface tension. Surface tension e�ects are included by calculating the local
interface curvature from gradients in the f ®eld. The tangential stress on the gas±liquid interface
is zero in this work.

The system of linear equations [6] and [8] is solved for the pressure corrections DP. From
these pressure corrections, velocity corrections can be obtained to update the velocity ®eld from
~V to Vn�1. The interface is now advected before the pressure correction procedure begins the
next time step.

Formally, interface advection amounts to solving the pure advection equation
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Standard di�erencing schemes applied to this equation su�er from di�usion which makes it di�-
cult to maintain a distinct interface. Therefore, most techniques resort to a tracking scheme
based on geometrical considerations and local interface reconstruction from the f ®eld infor-
mation. In this work the donor±acceptor algorithm of Hirt and Nichols (1981) is used to calcu-
late the ¯uid ¯uxes across control volume faces. Gas regions less than the grid size are treated
as being liquid-®lled.

Since an explicit technique is used, the CFL condition must be satis®ed when selecting a time
step. The advection algorithm demands the same restriction on dt. The time step varied dramati-
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cally over the run matrix, but 10ÿ5 s was a typical value. A total simulation time of 0.5 to 1.0 s
was used for these runs.

2.2. Boundary conditions

No slip boundary conditions were used on all solid boundaries. The domain represents a
closed end tube so these conditions apply to the ends of the domain as well as the pipe wall.
This boundary condition is imposed by setting the normal velocity to zero and specifying the
tangential velocity at a virtual node outside the domain to a value which, when linearly interp-
olated to the ®rst interior node, gives a velocity of zero at the wall.

2.3. Model geometry

A cylindrical coordinate system (r, z) assuming axial symmetry about the centreline of the
pipe was used. All runs, except for the grid sensitivity study, were done with a 25� 400 uniform
grid. Therefore, for a pipe diameter of D, the length of the solution domain was 8D. Although
this paper focuses on the steadily rising Taylor bubble, the results were obtained with a transient
model. The two initial conditions of the gas bubble are shown in ®gure 1. The gas volume in
both cases was initially pD3/3, twice the volume of a sphere of diameter D. This produced
bubbles that were at least two tube diameters long. White and Beardmore (1962) indicate that
the terminal speed is independent of the bubble length. Campos and Guedes de Carvalho (1988)
studied wakes behind Taylor bubbles and established a criterion for minimum bubble length to
make the wake ¯ow independent of bubble length. Although most runs in the current research
were for bubbles shorter than given by their criterion, no systematic study of the e�ect of length
on wake structure was attempted as part of this work.

The liquid was initially quiescent. The initial pressure in the gas was equal to the hydrostatic
pressure in the liquid at the depth of the bubble's centroid. The initial shape of the bubble
a�ects only its temporal evolution and not the ®nal shape attained. This was con®rmed by test-
ing several initial shapes other than those shown in ®gure 1.

2.4. Gas pressure model

The model calculates bubble volume from the volume fraction ®eld, f. Changes in this volume
result directly from changes in the f ®eld calculated by the interface advection algorithm in re-
sponse to the calculated velocity ®eld. The gas pressure is adjusted at each time step based on
an isentropic expansion/compression of the gas volume. An algorithm has been developed and
implemented that recognises and accounts for any break-up or coalescence which occurs during

Figure 1. Initial gas con®gurations for Taylor bubble simulations: (a) cases one and two; (b) all other
cases.
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the simulation. In this case, the Taylor bubble was initially the only gas in the solution domain.
Therefore, the volume and pressure of the bubble should be constant as it rises. In case one,
small bubbles broke o� as transition to the ®nal shape occurred. Once there is more than one
bubble in the solution domain, the constant pressure condition no longer applies since the
volumes of the individual bubbles are no longer constant.

3 . RESULTS AND DISCUSSION

The model was run for a variety of EoÈ tvoÈ s and Morton numbers which are summarised in
table 1. For this set of runs an assessment of bubble shape, terminal speed, and detailed velocity
®eld information will be made.

Previous researchers have attempted to describe the bubble behaviour by identifying forces
that may be either dominant or unimportant under particular conditions. These criteria, under-
standably, result in regimes were certain forces clearly dominate, separated by regions where
several forces are important. According to the guidelines developed by White and Beardmore
(1962), both surface tension and viscosity are negligible in case one. Cases two and three have
negligible viscous forces (Nf>550), while cases four and seven have negligible surface tension
forces (Eo>70). Cases six and nine have negligible inertia forces (Fr < 0.05). The other cases
have no forces which can be considered negligible.

3.1. Steady bubble shape

Figure 2 summarises the ®nal shapes predicted by the model for the full range of Eo and Mo
investigated. The general features which will be discussed are the leading edge, the trailing edge,
and the falling ®lm. The classical Taylor bubble often observed in the laboratory usually results
from air rising in water and has a prolate spheroidal leading edge and a ¯at, or even concave,
trailing edge.

Table 1. Run conditions for steadily rising Taylor bubble simulations

Case No.
1 2 3 4 5 6 7 8 9

logMo ÿ12 ÿ12 ÿ12 ÿ2 ÿ2 ÿ2 1 1 1
Eo 100 40 10 100 40 10 100 40 10
Nf 31,600 15,900 5,620 100 50 17.8 17.8 8.94 3.16

Figure 2. Steady Taylor bubble shapes for Eo= 100, 40, 10 and M= 10ÿ12, 10ÿ2, 101 computed with a
25�400 grid.
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3.1.1. Leading edge. The leading edge shape of the bubbles is their most universal feature. The
shape is a prolate spheroid and occurs over the entire range of conditions modelled in this
work. A quantitative comparison with experimental data will be made in Section 3.2.
3.1.2. Trailing edge. The results show ¯at or concave trailing edges for cases one, two, and

four. Fabre and LineÂ (1992) state that the inertia-controlled regime is realised if Nf >300 and
that in this regime the bubbles have ¯at bottoms. White and Beardmore (1962) cite a criterion
for negligible viscous e�ects equivalent to Nf >550. In the current study, both Nf criteria are
satis®ed for cases one, two, and three. However, case three does not have a ¯at bottom even
though it has an Nf of 5620. In addition, case four has a ¯at bottom even though Nf is only
100. A more detailed look at the ¯ow immediately below these two bubbles may help (see
®gure 3). It is interesting that, although the bottom of case three is shaped like an oblate spher-
oid, there is a rather large recirculation region below the bubble. In contrast, case four has a
¯at bottom but displays no recirculation zone. Therefore, it appears that the streamlines are
consistent with the expectation that a viscosity-dominated ¯ow (case 4) would have no separ-
ation while an inertia-dominated ¯ow would experience separation. However, under these con-
ditions it appears that these ¯ow characteristics do not translate into a spheroidal bottom for
the viscous ¯ow and a ¯at bottom for the inertial ¯ow. A more clear criterion for a rounded
bottom may be the Froude number. As can be seen in table 2, the three cases with ¯at bottoms
all have a relatively high Froude number (Fr>0.3).
3.1.3. Falling ®lm. The ®lm thickness will be discussed quantitatively in the next section, but

some qualitative discussion will be given here. Cases one, two, and three show a ®lm that con-
tinues to thin all the way to the trailing edge. These are the conditions for which White and
Beardmore (1962) stated that viscous forces are unimportant, so the thinning ®lm implies a
freely falling ®lm in these cases. All other runs have at least a portion of the ®lm with constant
thickness, indicating a falling ®lm which has reached equilibrium.
Another general feature apparent in ®gure 2 is that the bubble lengths vary widely for the

di�erent runs. However, the volumes of all the bubbles are the same (except for case one where

Figure 3. Streamlines immediately below bubbles for cases three and four.

Table 2. Predicted Froude number of steadily rising Taylor bubbles compared to the experimental data of White and
Beardmore (1962)

logMo
ÿ12 ÿ2 1

Eo Model Experimental
%

Di�erence Model Experimental
%

Di�erence Model Experimental
%

Di�erence

100 0.346 0.34 1.8 0.323 0.30 7.7 0.170 0.15 13.
40 0.350 0.32 9.5 0.246 0.22 12 0.0713 0.065 8.0
10 0.179 0.17 5.0 0.0252 0.030 ÿ16 0.00440 0.0048 ÿ8.3
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some small bubbles have been shed in the wake). The widely di�ering bubble lengths are attribu-
table to di�erent ®lm thicknesses.

The small bubbles in the wake of case 1 in ®gure 2 must be interpreted correctly in light of
the assumption of axial symmetry inherent in this two-dimensional model. Although they appear
as small bubbles they are, of course, toroids once they are revolved around the axis of sym-
metry. The bubbles typically trapped between two Taylor bubbles in a slug ¯ow are not toroidal
but roughly spherical. These, of course, cannot be modelled in two dimensions. Therefore, the
current model cannot provide insight into the complex interactions of small bubbles trapped in
the recirculating wake.

3.2. Film thickness

The most common quantitative measure of Taylor bubble shape is the variation of ®lm thick-
ness with distance from the top of the bubble. Figure 4 show the current prediction for
Eo = 100 and Mo = 10ÿ12 along with two experimental results. The ®rst set of data is taken
from DeJesus et al. (1995). Their conditions were Eo = 194 and Mo = 2.9� 10ÿ9. Although
they did not directly report measurements of ®lm thickness, they did report average ®lm velocity
vs axial position. They also report ®lm thickness at a speci®c location and its corresponding
average ®lm velocity. By continuity considerations, the ®lm thickness vs axial position can be
inferred from these data. The second set of data is taken from Mao and Dukler (1991). Their
conditions were Eo = 337 and Mo = 2.5� 10ÿ11 and measurements were only reported quite
near the top of the bubble. The numerical results fall well within the experimental data.

3.3. Terminal speed

The variety of runs presented provides the opportunity to evaluate the terminal speed predic-
tion of Taylor bubbles over a wide range of conditions. The run matrix includes regions where
inertia, viscosity, and surface tension are each unimportant. A summary of the terminal speed
predictions is given in table 2. The experimental results cited are taken from the general graphi-
cal correlation of White and Beardmore (1962). For most of the cases, the model overpredicts
the terminal speed but is largely within 10% of the experimental data. The only cases where the
terminal speed is underpredicted are cases six and nine, where White and Beardmore (1962) sta-
ted inertial e�ects were negligible. The predicted bubble shapes for these two cases are almost
identical.

3.4. Velocity ®eld

A detailed representation of the predicted velocity ®eld for case one is shown in ®gure 5. This
®gure shows velocity vectors, streamlines, and velocity pro®les at various axial locations. The
velocity ®eld shows the characteristics expected. Since this is an inertia-dominated ¯ow, the

Figure 4. Film thickness for Eo= 100, Mo= 10ÿ12 compared to experimental data.
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axial velocity in the ®lm is not a function of radial position. However, it does increase with
axial position, resulting in a continually thinning ®lm all the way to the trailing edge. A recircu-
lation zone is apparent in the wake of the bubble which is driven by the relatively high velocity
wall jet penetrating into the region below the bubble.

Figure 6 compares the axial velocity pro®les in the ®lm for case one and case seven. Both pro-
®les are shown at a position 3D/4 from the leading edge of the bubble. Velocities are normalised
to the terminal velocity and distances from the wall, y, are normalised with the local ®lm thick-
ness. For case one, the viscosity is relatively unimportant and the velocity pro®le in the ®lm is
quite ¯at. Note, in fact, that the numerical model is not resolving the details of the boundary
layer at all in this case. However, the prediction agrees very well with experiments because this
boundary layer is relatively unimportant in determining the bubble shape and terminal velocity.

Figure 5. Detailed velocity ®eld information for Eo = 100, Mo= 10ÿ12. The plots at the extreme left
and right give the axial and radial velocity components normalised by the terminal velocity of the
bubble. The left half of the centre plot shows lines of constant stream function while the right half

shows velocity vectors.
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In case seven, however, viscosity dominates and the boundary layer is much thicker. Therefore,
the boundary layer can be adequately resolved and a reasonable prediction is again achieved.
Because the wall shear force now equals the weight of the ¯uid in the ®lm, the ®lm is in equili-
brium and therefore has constant thickness.

The experimental work of DeJesus et al. (1995) provides detailed velocity measurements
around a rising Taylor bubble. Their work was done with air rising in kerosene within a
25.4 mm diameter tube yielding Eo = 194 and Mo = 2.9� 10ÿ9. According to the work of
White and Beardmore (1962), these bubbles should behave the same as those with Eo = 100
and M = 10ÿ12. Both are in the regime were surface tension forces and viscosity are negligible.
DeJesus et al. (1995) report velocity vectors at several axial planes along the length of the stea-
dily rising bubble. They also report radially averaged ®lm velocity at various axial locations.
Figure 7 shows some of these data compared to the present predictions.

3.5. Grid independence

Con®dence of grid independent results is gained from selected runs that were done with a
50�800 rather than a 25� 400 grid. The results are very similar. A representative result is given
in ®gure 8, which shows the shape of the bubble for both grids. In addition to this, the terminal
speed for this case changed by less than 1% upon grid re®nement.

Figure 6. Comparison of ®lm velocity pro®les in cases one and seven.

Figure 7. Average ®lm velocity for Eo = 100, Mo= 10ÿ12 compared to experimental data.
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4. CONCLUSIONS

It has been demonstrated that it is possible to numerically model several important features
of steadily rising Taylor bubbles over a large range of conditions (10REoR100 and
10ÿ12RMoR101). The terminal speed of the bubbles was well predicted. The ®lm thickness and
the average velocity in the ®lm compared favourably with experimental data. From the results,
several observations about Taylor bubble behaviour can be made.

1. The rounded leading edge exists for all conditions tested.
2. An equilibrium ®lm thickness was achieved for all runs with NfR100.
3. A ¯at bottom was observed for all runs with Fr>0.3.
4. Under certain conditions, a recirculation zone can occur below a rounded trailing edge. Also,

a ¯at trailing edge can apparently exist with very little recirculation.
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